Simple Circuits (F)

- 1. Which voltage is the maximum voltage made when four 1.5 V cells are connected in series?
- 0 V
- В 1.5 V
- С 3.0 V
- D 6.0 V

Your answer [1]

Which arrangement has the most resistance?

Your answer [1] **3.** A student investigates how current and potential difference vary in different components.

Look at the graphs of her results.

В

Current С

Which graph shows a filament lamp?

Potential difference

Your answer

[1]

4. A student sets up four different circuits. He uses identical lamps and the same cell. Look at the diagrams of his circuits.

В

С

D

Which circuit has the brightest lamp(s)?

Your answer

[1]

5. The table shows the current and potential difference for four different lamps.

Which lamp has the highest power?

Use the equation: power = potential difference × current

	Current (A)	Potential difference (V)
Α	2	5
В	3	4
С	4	2
D	5	1

Your answer [1]

6. A student sets up four electrical circuits.

Identify in which circuit the lamp will light up.

Your answer [1]

7. A student investigates how the resistance of a light dependent resistor (LDR) changes with light intensity.

Which graph shows the correct relationship between the resistance of an LDR and light intensity?

Your answer		[1]
-------------	--	-----

8. Which item uses the most power?

Use the equation: power = potential difference × current

	Item	Current (A)	Potential difference (V)
Α	Calculator	0.1	3
В	Mobile Phone	1.0	5
С	Radio	0.5	12
D	Torch	1.2	6

Your answer	[1]

9 (a). A student uses four electrical appliances for different lengths of time.

Look at the table.

Appliance	Power (W)	Time used (hours)
Hair dryer	1500	0.3
TV	100	5
Toaster	2000	0.2
Light bulb	10	12

i.	Which appliance uses the most energy?

ii. Which appliance uses the least energy?

______[1]

(b). Here are three different components and their use in the home.

Match the component to its correct use.

One has been done for you.

[2]

[1]

(c). A charge of 44 000 C flows through a light bulb. The potential difference is 230 V.

Calculate the energy transferred.

Use the equation: Charge = Energy ÷ Potential difference

Record your answer to 2 significant figures.

10 (a). A student builds a circuit to investigate the resistance of component X.

	_	-
i.	What is the name of this component?	_

[1]

ii. Why is this component needed in this circuit?

(b). The student uses the circuit to take current and potential difference readings.

The student plots a graph of her results.

i. Look at the graph.

What is component **X** in the circuit?

ii. The resistance of component **X** varies as the potential difference changes.

Describe **how** the graph shows this and explain **why** this happens.

(c). Comp	orient X rias a resistance of 10 \(\Omega \) when a current of 0.25 A nows.	
i. C	Calculate the potential difference across component X .	
L	Ise the equation: Potential difference = Current × Resistance	
	Answer =	V [2
ii. C	Calculate the power of component X when a current of 0.25 A flows.	
	Answer =	W [3
11. A domes	tic wind turbine has a power rating which varies from 1.0 kW to 3.0 kW.	
	mestic wind turbine has an electrical resistance of 23 Ω .	
	enerates a current of 11 A on a windy day.	
	culate the power output in kW of the turbine on this day.	
	Answer =	kW [4]
ii. Sugges	st why the manufacturer gives a range for the power rating of the wind turbine.	
		[1]
	ust one domestic wind turbine may be an unreliable source of power for a house.	-
	te a reason why.	
- 13 .	,	
		[41
		[1]

12 (a). A student sets up a circuit to find out the resistance of an unknown resistor. The student makes **three** mistakes in their circuit.

Look at the circuit diagram of their experiment.

i. Write down the **three** mistakes the student makes.

1		
2		
3		
		[3]
i.	For one of the mistakes identified in (i) describe how the student can fix the error.	
		[1]

(b). The student finds that the current is 20 mA when the potential difference is 4.0 V.

Calculate the **resistance** of the unknown resistor.

Include the unit for resistance in your answer.

Use the equation: resistance = potential difference ÷ current.

Resistance = Unit = [4]

13	(a).	Α	ΤV	has	the	label	below	on	it
----	------	---	----	-----	-----	-------	-------	----	----

OCR TV					
Voltage: 230 V Power: 65 W Frequency: 50 Hz					
	'				
Calculate the current in the TV v	vhen it is turned on.				
Use the equation: power = poten	tial difference × curr				
Give your answer to 2 significant figures.					

difference × current

(b). The TV is turned on for 30 minutes.

Calculate the energy transferred by the TV.

14. The graph shows thinking and braking distances for a car at different speeds.

Describe how thinking distance varies with increasing speed.

Use data from the graph in your answer.

		 [2]
 		1-1

15(a). A student sets up the circuit in Fig. 17.1 to investigate the resistance of a lamp.

Fig. 17.1

i. The student also needs to add a voltmeter to the circuit.

On Fig. 17.1 draw where the voltmeter should be connected.

ii. The student takes readings of potential difference and current and records them in **Table 17.1**.

Potential difference (V)	Current
1.0	1.000
2.0	1.9
3.0	2.7
4.0	3.2
5.0	3.5

Table 17.1

There are two mistakes in the results table.

Write down the two mistakes and suggest how they could be corrected.

Mistake 1:	
Correction 1:	
Mistake 2:	
Correction 2:	
	[4]

iii. Calculate the resistance of the lamp when the potential difference is $4.0\ V$ in **Table 17.1**.

Use the equation: potential difference = current × resistance

[2]

(b). The student plots the results from Table 17.1 on the graph in Fig. 17.2.

Fig. 17.2

i. Plot the missing point at 1.0 V on the graph and draw a line of best fit.

ii. Describe the relationship between potential difference and current.

Use data from the graph to support your answer.

[2]

iii. Explain how you could use the circuit in Fig. 17.1 to investigate the resistance of a fixed resistor instead of a lamp.

[2]

iv. Explain how and why the graph in Fig. 17.2 would look different for a fixed resistor at a constant temperature.

16. A student investigates if lamps are brighter in a series circuit or a parallel circuit. He sets up two different circuits, $\bf A$ and $\bf B$.

State which circuit will have the brightest lamps and explain why.

In your answer, include the variables that the student will need to control in this

experiment.	
	
	[6]

17. Calculate the charge when 200 J of energy is transferred with a potential difference of 40 $\rm V$.

Use the equation: energy transferred = charge × potential difference

Charge = C [3]

END OF QUESTION PAPER